120 research outputs found

    HyperVAE: A Minimum Description Length Variational Hyper-Encoding Network

    Full text link
    We propose a framework called HyperVAE for encoding distributions of distributions. When a target distribution is modeled by a VAE, its neural network parameters \theta is drawn from a distribution p(\theta) which is modeled by a hyper-level VAE. We propose a variational inference using Gaussian mixture models to implicitly encode the parameters \theta into a low dimensional Gaussian distribution. Given a target distribution, we predict the posterior distribution of the latent code, then use a matrix-network decoder to generate a posterior distribution q(\theta). HyperVAE can encode the parameters \theta in full in contrast to common hyper-networks practices, which generate only the scale and bias vectors as target-network parameters. Thus HyperVAE preserves much more information about the model for each task in the latent space. We discuss HyperVAE using the minimum description length (MDL) principle and show that it helps HyperVAE to generalize. We evaluate HyperVAE in density estimation tasks, outlier detection and discovery of novel design classes, demonstrating its efficacy

    Recognising faces in unseen modes: a tensor based approach

    Full text link
    This paper addresses the limitation of current multilinear techniques (multilinear PCA, multilinear ICA) when applied to face recognition for handling faces in unseen illumination and viewpoints. We propose a new recognition method, exploiting the interaction of all the subspaces resulting from multilinear decomposition (for both multilinear PCA and ICA), to produce a new basis called multilinear-eigenmodes. This basis offers the flexibility to handle face images at unseen illumination or viewpoints. Experiments on benchmarked datasets yield superior performance in terms of both accuracy and computational cost
    • …
    corecore